Skip to Content

Nihal Dharmasiri, Ph.D.


header


HomeCoursesPublicationsPositionsLinksContact Us 

Research Interests:

Plant Developmental Biology

Plant growth and development is regulated by both endogenous and environmental factors. Several plant hormones function as key endogenous regulators of plant development. Functions of these hormones are subjected to environmental regulation resulting in the final plant form that is shaped by both these factors. Our long-term goal is to understand the molecular mechanisms underlying interactions among plant development, hormones and environmental factors, and to use such knowledge to improve productivity of plants, whether they are crop plants or biofuel feedstocks. Our research program here at Texas State involves both basic and applied research.

Our lab currently focuses on how the plant hormone auxin controls plant growth and development in conjunction with environmental factors. We use the model plant Arabidopsis thaliana in our research. Auxin controls many aspects of plant growth, primarily by regulating cell division, cell expansion and cell differentiation. At the molecular level auxin controls these processes by regulating the expression of many genes. Auxin regulates these genes by the degradation of a group of transcriptional repressors known as Aux/IAA proteins. These repressors are degraded through ubiquitin-proteasome pathway involving SCFTIR1/AFBs. TIR1 and AFBs belong to a group of proteins known as F-box proteins. TIR1/AFBs along with Aux/IAA proteins function as co-receptors for auxin.

Flower

While indoleacetic acid (IAA) is the major form of natural auxin found in plants, there are many synthetic chemicals with auxinic activity such as 2,4-D, 1-NAA and picloram. Our work, along with others, shows that picloram functions differently than other commonly know auxinic compounds. We have recently isolated a number of Arabidopsis mutants that are resistant to picloram. Currently, we are in the process of cloning and characterizing mutant genes and elucidating their functions in plant auxin response. Recent studies from several labs indicate that plant auxin response is subjected to regulation by environmental stresses. In fact the expression of smoe auxin related genes is modulated by environmental stresses. We are interested in finding how these genes bridge environmental cues to plant auxin response. We use a combination of genetic, molecular, biochemical and microscopy techniques to understand how these genes function in auxin signaling pathway.

 

Auxinic herbicides have been used for a long time to selectively control broad leaf weeds in crops. However, these selective herbicides cannot be used in many dicot crops such as cotton, potato, soybean and tomato. Identification of auxin resistant mutant genes also gives the opportunity to use these mutant genes to generate herbicide resistance. We are currently investigating the possibility of using some auxin resistant mutant genes for generating herbicide resistant crop plants.